

- What are the main components of the CMN Model?
 - What are the key numbers from the CMN Model?
- What is Fitts' Law?
- Why evaluate?
- Lab vs. field studies?
- Participatory Design?
- Techniques to evaluate without users?
 - Literature review
 - Cognitive walkthrough
 - Heuristic evaluation
 - Model-based evaluation

Theory

\checkmark Models of interaction

 Affordances, mappings, constraints, types of knowledge, errors

\checkmark Design principles

⇒Human cognition and performance

• History and vision of HCI

Practice

✓ Sketching

 \checkmark User observation

 \checkmark Iterative design

✓ Prototyping

 \checkmark Ideation

 \Rightarrow User study and evaluation

Evaluation Techniques

Evaluating Without Users

E1 Literature ReviewE2 Cognitive WalkthroughE3 Heuristic Evaluation

E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative

E5 Model Extraction

- E6 Silent Observation
- E7 Think Aloud
- **E8** Constructive Interaction
- **E9** Retrospective Testing

Quantitative

E10 Controlled Experiments

+ Interviews, questionnaires,...

A Story

 In 1995, now-famous web guru Jakob Nielsen had less than 24 hours to recommend if adding three new buttons to Sun's home page was a good idea.

Check out his "Alertbox" online column for good (and often fun) web design advice

- He found that each new, but unused button costs visitors .5 million \$ per year.
- 2 of the 3 new buttons were taken back out.
- The method he used for his estimate: GOMS.

- Goals, Operators, Methods, Selection rules
- Card, Moran, Newell: The Psychology of HCI, 1983
- To estimate execution and learning times before a system is built

E4: Model-based Evaluation

- Some models exist that offer a framework for design and evaluation
- Examples:
 - \Rightarrow Information efficiency
 - \Rightarrow GOMS KLM, GOMS
 - Design Rationale (History of design decisions with reasons and alternatives)
 - Design Patterns

Measuring Interface Efficiency

- How fast can you expect an interface to be?
- Information as quantification of amount of data conveyed by a communication (Information theory)
 - E.g., speech, messages sent upon click...
- Lower bound on amount of information required for task is independent of interface design
- Information-theoretic efficiency $E = \frac{\text{Minimal info required for the task}}{\text{Info supplied by user}}$
 - $E \in [0, I]$ (e.g., E = 0 for providing unnecessary information)

Minimal number of characters required for the task

Character efficiency =

Number of characters entered in the UI

Information Content (Detailed)

- Information is measured in bits
 - I bit represents choice between 2 alternatives
- *n* equally likely alternatives
 - Total information amount: $log_2(n)$
 - Information per alternative: $(1/n)\log_2(n)$
- *n* alternatives with different probabilities p(i)
 - Information per alternative: $p(i)\log_2(1/p(i))$
 - Total amount = sum over all alternatives
- Consider situation as a whole
 - Probability of messages required
 - Information measures freedom of choice (information ≠ meaning)

- Four digits
 - First digit: 0
 - Second digit: 2 (70%), 5 (30%)
 - Third, Fourth digits: [0, 9] with equal probability
- E.g., 0241 for Aachen, 0525 for Paderborn
- What is the minimal information content of NRW landline area code?
 - Information per alternative: $p(i)\log_2(1/p(i))$

- Four digits
 - First digit: 0
 - Second digit: 2 (70%), 5 (30%)
 - Third, Fourth digits: [0, 9] with equal probability

	Probability	Values	p(<i>i</i>)	p(<i>i</i>)log2(1/p(<i>i</i>)) (bits/alternative)	Tota	l bits
02XX	0.7	100	$\frac{0.7}{100} = 0.007$	$0.007 \times \log_2(1/0.007)$ = 0.05	100×0.05 = 5	
05XX	0.3	100	$\frac{0.3}{100} = 0.003$	$0.003 \times \log_2(1/0.003)$ = 0.02	100×0.02 = 2	5 + 2 = 7

- Minimal information required: 7 bits
- What is the information content of the shown numeric keyboard for 4 digits?

2	3		ternatives:	[0 9]	 [0 9]	[0 9]	[0 9]
5	6		Counts:	[0,7] [0	[0,7] [0	[0,7] [0	[0,7] [0
8	9						
0		Inf	formation	conte	nt = 4	$\log_2(10)$)) = 13.

• What is the information-theoretic efficiency when you use this keyboard for NRW area code?

• E =
$$\frac{\text{Minimal info required for the task}}{\text{Info supplied by user}} = \frac{7}{13.29} = 52.67\%$$

- Minimal information required: 7 bits
- What is the information content of the shown numeric keyboard for 3 digits (because the first digit is always zero)?

				0				
1	2	3	Alternatives	Ŭ	[0 9]	[0 9]	[0 9]	
4	5	6	Counts:	0	10	10	10	
7	8	9						
	0		Information	conte	nt = 4	$\log_2(10)$) = 9.97	bits

• What is the information-theoretic efficiency when you use this keyboard for NRW area code?

• E =
$$\frac{\text{Minimal info required for the task}}{\text{Info supplied by user}} = \frac{7}{9.97} = 70.21\%$$
 Saved 17.54%!

Keystroke-Level Model

- Execution time for a task = sum of times required to perform the serial elementary gestures of the task
- Typical gesture timings
 - Keying K = 0.2 sec (tap key on keyboard, includes immediate corrections)
 - Pointing P = 1.1 sec (point to a position on display)
 - Homing H = 0.4 sec (move hand from keyboard to mouse or v.v.)
 - Mentally preparing M = 1.35 sec (prepare for next step, routine thinking)
 - Responding R (time a user waits for the system to respond to input)
- Responding time R effects user actions
 - Causality breakdown after 100 ms
 - User will try again after 250 ms \Rightarrow R
 - Give feedback that input received & recognized

Keystroke-Level Calculation

- List required gestures
 - E.g., HK = move hand from mouse to keyboard and type a letter
- Compute mental preparation times Ms
 - Difficult: user stops to perform unconscious mental operations
 - Placing of Ms described by rules
- Add gesture timings
 - E.g., HMPK = H + M + P + K = 0.4 + 1.35 + 1.1 + 0.2 = 3.05 sec
- Rule terminology
 - String: sequence of characters
 - Delimiter: character marking beginning (end) of meaningful unit
 - Operators: K, P, and H
 - Argument: information supplied to a command

Rules for Placing Ms

- Rule 0, initial insertion for candidate Ms
 - Insert Ms in front of all Ks
 - Place Ms in front of Ps that select commands, but not Ps that select arguments for the commands
- Rule I, deletion of anticipated Ms
 - Delete M between two operators if the second operator is fully anticipated in the previous one

E.g., PMK \Rightarrow PK

- Rule 2, deletion of Ms within cognitive units (contiguous sequence of typed characters that form a name)
 - In a string of MKs that form a cognitive unit, delete all Ms except the first

 $\mathsf{E.g.}, ``\mathsf{Is} \triangleleft ") \Rightarrow \mathsf{MK} \mathsf{MK} \mathsf{MK} \Rightarrow \mathsf{MK} \mathsf{K} \mathsf{MK}$

Rules for Placing Ms

- Rule 3, deletion of Ms before consecutive terminators
 - If K is redundant delimiter at end of a cognitive unit, delete the M in front of it, E.g., "bladd" \Rightarrow M 3K MK MK \Rightarrow M 3K MK K
- Rule 4, deletion of Ms that are terminators of commands
 - If K is a delimiter that follows a constant string then delete the M in front of it (not for arguments or varying strings)

E.g., "Is \triangleleft " \Rightarrow M K K MK \Rightarrow M K K K

- Rule 5, deletion of overlapped Ms
 - Do not count any M that overlaps an R
 - E.g., user waiting for computer response

Exercise: Temperature Converter

- Convert from degrees Fahrenheit (F) to Celsius (C) or vice versa, requests equally distributed
- Use keyboard or mouse to enter temperature
- Assume active window awaiting input, an average of four typed characters (including point and sign), and no typing errors

• Task: create and analyze your own interface!

The Dialog Box Solution with Radio Buttons...

...and Its Keystroke-level Model

Case I: select conversion direction

- Move hand to mouse, point to desired button, click on radio button (HPK)
- Move hands back to keyboard, type four characters, tap enter (HPKHKKKKK)
- Rule 0 (HMPMKHMKMKMKMKMK)
- Rule I, 2, 4 (HMPKHMKKKKMK)
- Estimated time = 7.15 sec
- Case 2: correct conversion direction already selected
 - MKKKKMK = 3.7 sec
- Average time = (7.15 + 3.7) / 2 = 5.4 sec

Example: Temperature Converter

- Keystroke efficiency
 - Type C or F, value, enter: M K K K K K K K M K \Rightarrow 3.9 sec (char. eff. 67 %)
 - Type value, then C or F: M K K K K K M K \Rightarrow 3.7 sec (char. eff. 80%)
 - Bifurcated: M K K K K = 2.15 sec (char. eff. 100 %)

Example: Temperature Converter

- Input assumptions (given)
 - 50% Fahrenheit, 50% Degree Celsius
 - 75% positive, 25% negative
 - 10% integer, 90% decimal
 - All digits are equally likely
 - Only four characters input

Temperature Converter

Example:

Numbers	Prob.	Values	p(<i>i</i>)	Information in bits	Overall (values x information in bits)
dd	12.5%	100	0.00125	0.012	Ι.2
-d.d	12.5%	100	0.00125	0.012	I.2
.ddd	25%	1000	0.00025	0.003	3
d.dd	25%	1000	0.00025	0.003	3
dd.d	25%	1000	0.00025	0.003	3

 \Rightarrow Minimal info required for the task = 11.4 bits/message

 \Rightarrow Simple approach: $4 \log_2(12) \approx 14$ bits

Example: Temperature Converter

Information officiancy" E =	II.4 bits							
 Information enciency: E – Info s 	supplied by user							
 I28 keys standard keyboard (5 bits/key): 	$E = 11.4 / (4 \times 5)$	≈ 55%						
 I6 keys numeric keypad: 	$E = 11.4 / (4 \times 4)$	$\approx 70\%$						
 I2 keys dedicated keypad: 	$E = 11.4 / (4 \times 3.5)$	≈ 80%						

GOMS: Components

- Goals describe user's end goals
 - Routine tasks, not too creative/problem-solving
 - E.g., "copyedit manuscript"
 - Leads to hierarchy of subgoals
- Operators are elementary user actions
 - Key presses, menu selection, drag & drop, reading messages, gestures, speech commands, ...
 - Assign context-independent duration (in ms)
- Methods are "procedures" to reach a goal
 - Consist of subgoals and/or operators
- Selection rules
 - Which method to use for a (sub)goal
 - E.g., to delete some text (individual preferences apply!)

Sample Method and Operators

GOAL: HIGHLIGHT-ARBITRARY-TEXT

- I. MOVE-CURSOR-TO-BEGINNING I.10s
- 2. CLICK-MOUSE-BUTTON 0.20s
- 3. MOVE-CURSOR-TO-END I.10s
- 4. SHIFT-CLICK-MOUSE-BUTTON 0.48s
- 5. VERIFY-HIGHLIGHT I.35s

GOMS Results

- Execution (& learning) times of trained, routine users for repetitive tasks (goals), leading to cost of training, daily use, errors
 - Can be linked to other costs (purchase, change, update system), resulting in \$\$\$ answers
 - Use to model alternative system offers

E.g., "new NYNEX computers cost \$2M/year more" [Gray93]

- Estimate effects of redesign
 - Training cost vs. long-term work time savings
- Starting point for task-oriented documentation
 - Online help, tutorials, ...
- Don't use for casual users or new UI techniques
 - Operator times not well defined

Variants of GOMS

- GOMS (Card, Moran, and Newell 1983)
 - Model of goals, operators, methods, selection rules
 - Predict time an experienced worker needs to perform a task in a given interface design
- Keystroke-level GOMS model (simplified version)
 - Comparative analyses of tasks that use mouse (GID) and keyboard
 - Correct ranking of performance times using different interface designs
- NGOMSL (natural GOMS language)
 - Considers non-expert behavior (e.g., learning times)
- CPM-GOMS (critical path method)
 - Computes more accurate absolute times
 - Considers overlapping time dependencies

CPM-GOMS Example (Excerpt)

Sample tool: QGOMS [Beard96]

CogTool

- UI prototyping tool with predictive human performance model
 - Create different storyboards
 - Demonstrate tasks on the storyboards
 - Produce cognitive model
- Available for free, Java
- http://cogtool.hcii.cs.cmu.edu/

Frame: Tutorial Project_Answer > New York (Guide > 2-Museums_List
	Frame Properties
Be Nyc Al (Maps) (Tourist Info) (1 [1]	Name:
Museums (Excursions) Abigail Adam Smith Mus (All Places)	2-Museums_List
American Academy of A (Attractions) American Craft Museu Bus Bus	
American Folk Art Muse American Museum of N Hotels	
Asia Society Galleries Children's Museum of Museums	letter input area
IAISIDIFIGIHIJIKILI↔ Shopping IZIXICIVIBINIMICIear Theater	▶ M
Search (Subway)	
• Standard Custom Zoom: 100 %	
Create Button	1.

CogTool: Defining hit zones for the UI

1-Start	Prediction: 14.197 s Show Visualization
lmVx	Script Step List
lew York (Help) 🗹 (Maps)[1]	Frame Action
TC update) 4.01 (All Places)	1-Start Think for 1.200 s
Contract (Planning)	1-Start Move and Tap
N C W/ (Airports)	1-Start Wait for museum list to appear for
	2-Museums_List Move Mouse
	2-Museums_List Enter Graffiti® Strokes: m
ChoiceWay Guides)	2-Museums_List Wait for m filter for 3.760 s
ocopyright 2003 oiceWay MEDIA, Inc. (Int'l Visitors)	3-m_List Enter Graffiti® Strokes: e
Il rights reserved. (Address Finder)	4-me_List Move and Tap
88	4-me_List Wait for MET info for 2.620 s
Zoom: 100 %	
20011. 100 %	Delete Think
Widget Think	Delete Think
	Compute

CogTool: Record interactions

me (s)	0.0	I	T	L	Ī	i.	L	I	ī	T		1	I	Ē	I	î.	1	I	I	I	2.0	L	I	1	L	I	I
ame	1-	Start																2-Mu	seum	is_Lis	it						
vstem Wait																	[Wait f	ior m	useur	m list t	to app	ear				
ision – Enc														Auseu	ms in	1											
ve Move - Exec															Eye												
ve Move - Prep													E	ye Mo	N												
ognition	тн	INK-2	2											ļ													
ght Hand														Mov	e Fin <u>c</u>	ger to	Muse	ur									

CogTool:Visualize interactions in a timeline

Evaluation Techniques

Evaluating Without Users

E1 Literature ReviewE2 Cognitive WalkthroughE3 Heuristic Evaluation

E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative

E5 Model Extraction

- E6 Silent Observation
- E7 Think Aloud
- **E8** Constructive Interaction
- **E9** Retrospective Testing

Quantitative

E10 Controlled Experiments

+ Interviews, questionnaires,...

Evaluating with Users

- EI-E4 evaluate designs without the user
- As soon as implementations (prototypes) exist they should also be tested with users, using the following methods

E5: Model Extraction

- Designer shows user prototype or screen shots
- User tries to explain elements and their function
- +Good to understand naïve user's conceptual model of the system
- Bad to understand how the system is learned over time

E6: Silent Observation

- Designer watches user in lab or in natural environment while working on one of the tasks
- No communication during observation
- + Helps discover big problems
- No understanding of decision process (that lead to problems) or user's mental model, opinions, or feelings

E7: Think Aloud

- As E7, but user is asked to say aloud
 - What she thinks is happening (state)
 - What she is trying to achieve (goals)
 - Why she is doing something specific (actions)
- Most common method in industry
- +Good to get some insight into user's thinking, but:
 - Talking is hard while focusing on a task
 - Feels weird for most users to talk aloud
 - Conscious talking can change behavior

- Two people work on a task together
 - Normal conversation is observed (and recorded)
 - More comfortable than Think Aloud
- Variant of this: Different partners
 - Semi-expert as "trainer", newbie as "student"
 - Student uses UI and asks, trainer answers
 - Good: Gives insight into mental models of beginner and advanced users at the same time!

42

Recording Observations

- Paper + pencil
 - Evaluator notes events, interpretations, other observations
 - Cheap but hard with many details (writing is slow). Forms can help.
- Audio recording
 - Good for speech with Think Aloud and Constructive Interaction
 - But hard to connect to interface state
- Video
 - Ideal: two cameras (user + screen) in one picture
 - Best capture, but may be too intrusive initially

Silverback

44

E9: Retrospective Testing

- Additional activity after an observation
- Subject and evaluator look at video recordings together, user comments his actions retrospectively
- Good starting point for subsequent interview, avoids wrong memories
- Often results in concrete suggestions for improvement

EI0: Controlled Experiments

- Quantitative, empirical method
- Steps:
 - Formulate hypothesis
 - Design experiment, pick variable and fixed parameters
 - Choose subjects
 - Run experiment
 - More details: next lecture Interpret results to accept or reject hypothesis

Other Evaluation Methods

- Before and during the design, with users:
 - Questionnaires
 - Personal interviews
- After completing a project:
 - Email bug report forms
 - Hotlines
 - Retrospective interviews and questionnaires
 - Field observations (observe running system in real use)

Evaluation Techniques

Evaluating Without Users

E1 Literature ReviewE2 Cognitive WalkthroughE3 Heuristic Evaluation

E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative

E5 Model Extraction E6 Silent Observation E7 Think Aloud E8 Constructive Interaction

E9 Retrospective Testing

Quantitative

E10 Controlled Experiments

+ Interviews, questionnaires,...

Dealing with Testers

- Tests are uncomfortable for the tester
 - Pressure to perform, mistakes, competitive thinking
- So treat testers with respect at all times!
 - Before, during, and after the test

Before the Session

- Do not waste the tester's time
 - Run pilot tests before
 - Have everything ready when testers arrive
- Make sure testers feel comfortable
 - Stress that the system is being tested, not them
 - Confirm that the system may still have bugs
 - Let testers know they can stop at any time

- Guarantee privacy
 - Individual test results will be handled as private

Inform tester

- Explain what is being recorded
- Answer any other questions (but do not bias)
- Only use volunteers (consent form)

During the Session

- Do not waste the testers' time
 - Do not let them complete unnecessary tasks
- Make sure testers are comfortable
 - Early success in the task possible
 - Relaxed atmosphere
 - Breaks, coffee, ...
 - Hand out test tasks one by one
 - Never show you are unsatisfied with what the tester does
 - Avoid interruptions (cell phones, ...)
 - Abort the test if it becomes too uncomfortable
- Guarantee privacy
 - Never let testers' boss (or others) watch

After the Session

- Make sure testers are comfortable
 - Stress that tester has helped finding ways to improve the system
- Inform
 - Answer any questions that could have changed the experiment if answered before the test
- Guarantee privacy
 - Never publish results that can be associated with specific individuals
 - Show recordings outside your own group only with written consent from testers

Evaluation Techniques

Evaluating Without Users

E1 Literature ReviewE2 Cognitive WalkthroughE3 Heuristic Evaluation

E4 Model-based Evaluation (GOMS,...)

Evaluating With Users

Qualitative

E5 Model Extraction E6 Silent Observation E7 Think Aloud E8 Constructive Interaction

E9 Retrospective Testing

Quantitative

E10 Controlled Experiments

